Speed equals distance, and 60 MPH = 88 fps (feet per second) (where fps=1.467 * MPH). Stopping distance is dependent on the size of the vehicle in motion, among other factors like tire wear, brake system design, surface conditions, the age of the foot smashing the brake pedal, the time it takes to reach the pedal, etc.
Comes down to common sense, less urgency in getting to our destinations, and math:
No matter the velocity, that velocity is reduced 15 fps every second. If the initial velocity is 60 mph, 88 fps, after 1 second elapsed, the vehicle velocity would be 73 fps, after 2 seconds it would be 58 fps decreasing progressively thereafter. For the true mathematical perfectionist (one who carries PI to 1000 decimal places), it would have been technically correct to indicated the formula is ‘fpsps’ rather than ‘fps’, but far less understandable to most drivers. Since at speeds of 200 mph or less, the difference from one method to the other is in thousanths of seconds, our calculations in these examples are based on the simple fps calculations.
Given the previous set of conditions, it would mean that a driver could stop the described vehicle in a total of 6.87 seconds (including a 1 second delay for driver reaction) and your total stopping distance would be 302.28 feet, slightly more than a football field in length!
Virtually all current production vehicles’ published road braking performance tests indicate stopping distances from 60 mph that are typically 120 to 140 feet, slightly less than half of the projected safety distances. While the figures are probably achievable, they are not realistic and certainly not average; they tend to be misleading and to those that actually read them, they create a false sense of security.